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Abstract-An equation is obtained for the mean product of concentrations of two species in an isotropic
stationary random velocity field. The velocity field is assumed to be a normal random process <5-correlated
with respect to time.The processofmixing up toa molecular levelis shown to be associated with diffusion in the
Lagrangian coordinates. The mean species concentration in the Lagrangian variables has been found . The
estimates have been made for the rate of growth of the admixture cloud size in the Lagrangian and Eulerian
coordinates. The characteristic times of mixing'of presepa rated species have been estimated. An expression is
obtained for the total product of a slow irreversible second-order chemical reaction at arbitrary initial
distributions of reagents. The equilibrium structural function of the passive admixture is given in terms of the

structural function of the velocity field.
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1. 11'TRODUCfIO;,\\

THE MIXll-;G of reagents up to a molecular level is an
important aspect of the problem of chemical reactions
in turbulent media [1]. The molecular-level mixing at a
certain point in space means that at this point the
concentrations of all the substances being mixed
become simultaneously different from zero. The rate of
mixing governs the yield of the chemical reaction
product. In particular, the rate of substance formation
in a very fast chemical reaction is limited by the finite
rate of mixing.

It has long been known that the rate of mixing in
turbulent media is much faster than in laminar ones.
The first estimates of the mixing rate were made by
Corrsin [2-4] who estimated the time for the decay of
fluctuations of a statistically homogeneous concen­
tration field. It is the disappearance of fluctuations
which indicates that the added material has been mixed
up to the molecular level with the host medium. In a
typical case of moderate Schmidt numbers this time has
turned to be equal to the lifetime ofa vortex having the
size of the order of the outer scale of the concentration
field.

In recent times a number of problems of chemical
reactions have been considered and in this way the
problem of mixing has also been touched to some
extent. By using different closure methods for the
moment equations, one- and two-component second­
order reactions have been studied in detail at the final
stage of turbulence decay when the medium motion can
be neglected [5-7]. It was shown in refs. [7-9] that the
problem of a very fast two-component second-order
reaction is reduced to the problem of finding the one­
point distribution function of the substance concen­
tration in the absence of a chemical reaction. A detailed
discussion of the methods used for the purpose is given
elsewhere [10]. Some aspects of chemical reactions
involving heat generation were considered in ref. [II].

The present paper concerns itself with the problem of
mixing ofpreseparated species up to the molecular level
in the absence of chemical reactions. This paper differs
from the other reported studies in the method of
solution and in a more general statement ofthe problem
which is formulated as follows.

Suppose that at the initial instant of time the
arbitrary distributions ofconcentrations c?(x)and c~(x)

of two species with unit masses are assigned in the
turbulent medium. The statistical characteristics of the
velocity field are assumed to be given and independent
of the above species in the medium, while the
coefficients of molecular diffusion of species are
assumed to be independent of their concentrations. The
random velocity-averaged product of concentrations
(ci(x, t)cz(x, t) at any subsequent time is required.
This product may serve as a quantitative characteristic
of the extent of mixing of species up to the molecular
level. Just as in all the previous works dealing with this
subject, the derivation of the basic equations in this
work is based on some simplifying assumptions the
main one being the assumption that the velocity field is

8-correlated in time. In orderto check the validity of the
initial equations obtained in this way, they were used
for solving a number of 'test' problems of turbulent
mixing. Thus, without resorting to any additional
arguments following, for example, from the dimen­
sional or similarity theories, the Richardson 4j3rd law
has been obtained as well as the equilibrium structural
function of the isotropic concentration fieldpointing to
the fact that the approximation used for the problem of
turbulent mixing is quite reasonable.

2. BASIC EQUATlOl'S

Let us derive an equation which would govern a
more general object of investigation (Ci(Y,t)cz(Y
+ x, t). The starting equations will be the dynamic
equations for concentration in a moving medium. In
particular, the equation for the concentration of the
first species is

OCi(Y' t) oCi(Y, r)
-0- +Vk(y,t)-a- = lliL\Cl(Y,t), (I)

t Yk

where vk(Y,t) is the kth component of the incom­
pressibleliquid velocityatthe pointyattime t ;andll1 is
the coefficient of the molecular diffusion of the first
species. The equation for cz{y + x, t) has a similar form.
Multiplying equation (1) by cz(y + x, r), and the
equation for the concentration of the second substance
by Cl(Y' r), and then adding them together, we shall
obtain, after averaging over a random velocity field, the
following equation

[~ -Jll(~_~)Z-Ilz aZzJ
ot aYk OXk aXk

x (Cl(y,t)Cz(y+x't)+(a~k - o~J

a
x (vk(y,t)Cl(Y,t)Cz(y+x,t)+­

OXk

x (Vk(Y+X,t)C 1(y,t)cz(Y+x, t),= O. (2)

In order to calculate the mean product of the velocity
and concentrations, being the functional of the velocity,
we suppose that the velocity is the Gaussian random
process 8-correlated in time. By applying the method
suggested in ref. [12], a detailed description of which is
given in refs. [13, 14], we obtain for the case of the
stationary isotropic velocity field:

(vk(z, t)Ci(y,t)cz(Y+x, t)

= -[Bkj(Z-Y)(~ -~)+Bkj(Z-Y-X)~J
a~ a~ aXj

x (ci(y,t)cz(y+x,t), (3)

where

Bkj(z - y) = f<X> (vk(z, t)Vj(Y,n) dr. (4)

By substituting equation (3) into equation (2) and
taking into account the incompressibility, we obtain
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in which

3. DIFFUSION IN TilE LAGRANGIAN COORDINATE

SYSTEM AND MIXING

t/J(O, I) = fG(Y2- YI. I/O)c~(Y I)C~(Y2)dYI dY 2- (15)

Setting equation (12) equal to equation (15) and
taking into account the arbitrariness of the initial
distribution of c~, gives the expression for the mean
concentration of the species, the molecular diffusion
coefficient of which is equal to 211 = III +112' in the

Converting in equation (10) to the Lagrangian
coordinate system Y and taking into account that for
the incompressible liquid the transformation Jacobian
between the Euler and Lagrangecoordinates is equal to
unity [IS], we obtain

t/J(O,l) = f<CI[y(Y,1),/]C2[Y(Y'1),/]) dY

= f<C.(Y,/)C2(Y,/» dY. (II)

The use of the hypothesis concerning the (j­

correlationability of velocity field allows one to realize
the consequences of equation (9) in a simple analytical
form. As it follows from equation (7),the function t/J(x, I)
depends only on the sum of the molecular diffusion
coefficients. Therefore, the result of mixing equation
(II) will remain the same if we assume that one of the
specie s, e.g. the second one, has a zero diffusion
coefficient, while the first has the diffusion coefficient
which is equal to JlI +112' Taking into account the
above invariance of concentration distributions in the
Lagrangian vari ables at zero diffusion coefficients, we
may write

"'(0, I) = f<CI(Y' 1)1/., +1" • c2(Y, 1)II' ~o) dY

= f<CI(Y, /)11'1 +1')c~(Y) dY. (12)

On the other hand, equation (7) yields

"'(0, r) = fG(O, I/y)t/J(y, 0) dy, (13)

where G(X,//)') is the Green's function of equation (7)
which corresponds to the initial (j-function at the point
y. Taking into consideration the symmetry of the
Green's function over the spatial variables, which
follows from the Hermitian nature of the spatial part of
the operator in equation (7), and the definition (6) of the
function t/J, we obtain

"'(0,/) = fG(~·.I/OM(z)c~(z+y)dz dy

= fG(Y2-YI,I/0)c~(YI)C~(Y2)dYI dh (14)

Integration in equation (14) can be considered to be
performed over the position of fluid particles at the
initial time instant, i.e. actually over the Lagrangian
variables. Therefore, equation (14) can be rewritten in
the form

(8)

(9)

(5)

D
Dt c(y, l) = 0,

where D/Dl is the operator giving the material
derivative. It follows from the above equation that at
Jl = 0 the concentration of the passive admixture
retains its initial value in the Lagrangian variables.

The process of mixing with in the entire volume is
characterized by the quantity

Henceforth, we will be interested in the volume-integral
product of concentrations

t/J(x ,t) =f<cl(y,t)C2(Y+X,t» dy, (6)

One of the main outcomes of this study is a
constructive description of mixing and diffusion of
admixtures in the Lagrangian system ofcoordinates.As
is known, the Lagrange approach is based on the study
of the behaviour of fluid particles tagged by one or
another means.The natural label is usually taken to be
the Eulerian coordinate of a fluid particle at the initial
instant of time [IS]. In principle, the Euler and
Lagrange approaches are equivalent, and a choice
between the two may be made only on the basis of the
nature of the problem studied.

An attractive feature of the Lagrangian description
of mixing is the fact that at the zero coefficient of
molecular diffusion the concentration of the passive
admixture is not altered during the motion of a fluid
particle and thus is independent of the random velocity
field. This is easily seen from equation (I), which at
Jl = 0 takes on the form

The equation for t/J(x, t) is obtained by integration of
equation (5) over y:

at/J . a2t/J .-a = !0lk(X)-aa +011+1(2)t1t/J, (7)
I Xl Xk

the following equation for the mean product of
concentrations



1826 V. P. KABASIINIKOV and A. A. KURSKOV

Lagrangian coordinates

(23)

where R5 is the mean square of the initial cloud size;

X 2(t) is the mean square of the width of the Lagrangian
Green's function which describes the admixture cloud
with the initial concentration distribution in the form of
the t5-function

X 2(c) = 4n t o? X 4'lJ(X , t) dX. (24)

complete investigation of equation (18), using the
experimental data to determine !l(x) within the entire
range of the values of x, appears to be feasible only by
numerical methods. However, the basic qualitative
principles of diffusion (in the Lagrange coordinates)
and of mixing can be established by not resorting to
the solution of equation (18) but rather restricting
ourselves only to the study of the moments of the
Lagrangian Green's funct ion .

4. TIlE LAGRANGIAI': SIZE OF TIlE ADMIXTURE

CLOUD AND TilE TI;\IE OF MIXING

The results obtained in Section 3, in particular
equation (12),allow the interpretation of the process of
mixing of two species as the 'spreading', in the
Lagrangian coordinate system, of the cloud of one of
the species diffusing with the total diffusion coefficient,
over the initial distribution of concentration of the
other species. The mixing of the preseparated species
will occur after a noticeable overlapping of these
distributions. This requires a corresponding increase in
the size of the admixture cloud in the Lagrangian
coordinate system. The mixing time is understood to be
a period during which this overlapping will occur. It is
apparent that in order to determine the mixing time it is
necessary to know the time dependence of the
Lagrangian size of the admixture cloud. The
Lagrangian size of the diffusing admixture cloud at
time t has a simple geometrical meaning: this is the
initial (at l = 0) distance between the fluid particles
into which the admixture has diffused by the time t.

In an isotropic turbulent medium the position of the
admixture cloud centroid in both the Eulerian and
Lagrangian coordinates does' not depend on time. By
matching the coordina te origin with the cloud centroid
we will obtain, with account for equation (16), the
following expression for the RMS size of the admixture
cloud in the Lagrangian coordinates

R 2(t ) = fX 2( c(X, t» d X

= fX 2'lJ(X - Y, I)CO(y)dY dX. (22)

Employing the substitution Z = X - Y in the above
equation and taking into consideration that because of
the parity of the Lagrangian Green's function its first
moment is equal to zero, we obtain

(19)

(17)

1 b'(x)
0'(x 0) = ---, 21t X '

where

where I and L is the inner and outer turbulence scale,
respectively; c is the specific rate of turbulent energy
dissipation; and v the molecular viscosity of the
medium.

Equation (18) was investigated for each of the
functions !Z(x) in equations (21). The analytical
solution of equation (18) obtained for the scales less
than I, where !2 - x 2

, is given elsewhere [20]. The
solution of equation (18)at Jl = 0 involving the function
§' (x), given by relation (21b), is presented in the
Appendix for the inertia range of scales. A more

!Z(x) = f O? ([VL(O,t)-vL(x, I)]

x [vL(O, I') - VL(X, t}]) dl', (20)

and vListhe velocity component parallel to x, Equation
(18) is obtainable from equation (7) if the spherical
symmetry of the solution, the isotropic nature of the
tensor ~ik and fluid incompressibility, are taken into
account.

The analytical form of the function !?(x), having the
meaning of the 'turbulent' diffusion coefficient, is
unknown within the entire region of the argument
variation. This prevents the analytical solution of
equation (18) bein g valid for all the values of x. The
function !Z(x) can be estimated by the formula q (x)
~ ~LL(X) · 't"(x), where gLL(X) is the longitudinal
structural velocity function, and 't"(x) is the lifetime of
the x-sized vortex determined by the difference of
velocities L\.v..~ y'[!?LL(X)] at the distance x: 't"(x)
~ x/L\.v...As a result we obtain

vGY, x«l, (21a)

!Z(x)- Cl/JX4/3~V(TY/J, l «x «L, (2Jb)

c I/ J L4 f3, x»L, (21c)

'lJ(X, I) = 0'(X, I),

and satisfies the equation

0'(x, I) = X- 2 {x2[2/l+!?(X)]'lJ'(X, I»)', (18)

subject to the initial condition

(c(X,I» =f0'(X- Y, I)CO(y) dY, (16)

where 0'(X, I) = G(X, I/O) is the so-called Lagrangian
Green's function. It describes the mean concentration
of the species at time I at the Lagrangian point X under
the condition that att = OitwasconcentratedatX = O.
I n the case of an isotropic velocity field, the Lagrangian
Green's function depends only on the absolute value of
the argument



Mixing to a molecular level in turbulent med ia 1827

Equation (25) is valid for the times not exceeding the
time

(' f al dyJo ~(x, t) dt = x y2[2Jl+E2(y)]

X Lal [q}(z,t)- q}(z,O)]ZZ dz. (28)

By substituting the initial condition (19) into
equation (28)and integrating both sides of equation (28)
over the volume, we obtain

(32)

(31)

(33b)

(33c){

RlP£-1/3, 1« R o « L,

t -
m R2.-1 /3L-4/3 R» L

Otl '0'

The mixmg time tm depends on the initial
concentration distributions. Let, for the sake of
definiteness, the first species be concentrated within the
volume hav ing the characteristic size Ro, while the
second be distributed in the space outside this volume.
In this case.the time tm, according toequation(12),is, by
the order of magnitude, the time of doubling the
Lagrangian volume of the first species, or, as it follo ws
from equation (23),is equal to the time during which the
size of the Lagrangian Green's function will become
comparable with the initial size ofthe admixture cloud ;

i; ~ r In [1 + ~ _v_ (Ro)2J, Ro « l, (33a)
3 III +Jl2 I

It is easily seen that the above equality can be also
applied to estimate the time of mixing of two species
which initially occupied the volumes of the size - Ro,
spaced by the distance ~ Ro, and of the species the
initial concentration distributions of which had the
form of the 8-functions spaced by the distance R o. For
these types of initial distributions the mixing time
estimated byequation (32)with equations (25), (30)and
(31) taken into account, is equal, by order ofmagnitude,
to

Expressions (33b) and (33c) are valid for Sc - 1.
The estimation ofthe damping time for a sta tistically

uniform field of concentra tions having the outer scale
within the inertia interval has been made elsewhere [4].
For the numbers Sc ~ 1 this estimate coincides with
that given by equation (33b).

This relation can be used to estimate the Lagrangian
size of the cloud for the times that exceed t" When the
cloud size lies within the inertia interval, then the main
contribution to the integral (29) comes from the values
of x within this interval. For such values of the upper
limit, the internal integral in equation (29) can be
evaluated using relations (21a) and (21b). At x '» l, for
the typical case of II ~ v the value of the internal integral
is equal to _£-1/3X 2l3, which, after substitution into
equation (29), gives

Lal 4n:x2q}(x , t)x 2/3 dx == X 2/3(t) ~ £ 1/3t• (30)

Thus, if the Lagrangian sizes of the cloud fall within
the inertia scale interval, the 2/3rd moment of mean
concentration distribution increases linearly with time.

If the cloud, originating from the initial 8·function,
has expanded in the Lagrangian coordinates up to the
dimensions that substantially exceed L, then, as follows
from equations (21) and (29), the law which governs its
expansion at times exceeding the time of attainment of
the size - L, is of the form

(29)

(26)

(27)

I
al IX y dy

3t = 4n:x 2q}(x , t) dx 2 )'
o 0 Il+E2(y

t, = r In (1 +~ ~),
6 II

during which the Lagrangian size attains the value ~ l.
It follows from equation (25) that the initial (at t :s r)

expansion of the cloud occurs at the expense of
molecular diffusion without the interaction with
hydrodynamics. For the species, for which Jl ~ v, the
role of hydrodynamics is relatively insignificant over
the whole stage of cloud expansion up to the size ~l,

which is att ained for the time ~!. For the species for
whichu « v.at the times withintherange r < t < t"the
Lagrangian size increases exponentially whi ch is due to
the exponential growth in time of the mean
concentration gradients occurring on the scales smaller
than 1[16]. Note that according to equations (23) and
(25) at II = 0 the Lagrangian size of the cloud does not
increase. This means that the admixture remains within
the same fluid particles into which it penetrated
initially. In other words, as time proceeds, at Jl = 0, the
fluid particles,different from those which were coloured
in the beginning, retain their initial colour. Yet, the
increase of the Lagrangian size of the cloud may occur
only as a result of the appearance of additional
'coloured' particles. Consequently, it is impossible to
mix the preseparated species having III = lI z = 0 up to
the molecular level.

In order to estimate the size of the region where the
Lagr angian Green's function is noticeably different
from zero , there is no need to solve equation (18).
Express ~(x, t) from equation (18)in terms of~(x, t) and
integrate the result with respect to time from 0 to t

It follows from equation (23) that the Lagrangian
RMS size of the cloud is equal to its initial value
summed up with the mean square of the Lagrangian
Green's function width. For short times , when this
width is much less than I, relations (18) and (21a) yield
equation (24) for the Lagrangian size the solution of
which, with equation (19) taken into account, is

X 2(t) = 12Jlr(exP~-I). (25)

where! is the characteristic time of the inner turbulence
scale
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the estimates given by equations (25),(30)and (31) are
valid.

It is not difficult to estimate the size of the cloud also
in the case of an arbitrary, initial, spherically
symmetrical distribution of concentration. When the
size of the cloud is much less than 1, then equations (35)
and (2la) may yield the equation for the second
moment from equation (36), the solution of which is

where,~ is the second moment of the initial Richardson
function.

It follows from equation (37) that for the time I - r
the size of the cloud increases at the expense of
molecular diffusion and convective transport of the
substance, the contributions of which are proportional

to 12II! and ,~. IfJI - v, then by the time I - r the cloud
will have attained the size -1 and its further increase
cannot be described by equation (37). If II « v, then by
the time I - , the size of the cloud willhave become
much smaller and its subsequent expansion up to the
size -I will have an exponential character. This is due
to an exponentially rapid increase of the mean distance
between the fluid particles on the scales -I [16]. Note
that if the initial size of the cloud differs from zero, the
Eulerian size, in contrast to the Lagrangian one,
increases also at II = O.

When the size of the diffusing admixture cloud

S. TilE EULERIAN SIZE OF TilE CLOUD

Setting C I = C2 = c(y, I) in equation (6), we obtain
that the quantity l/J(x, I) transforms into the Richardson
function [16]

l/J(x, I) = f(c(y, I)C(y+X, I» dy, (34)

with the help of which it is possible to determine the
mean Eulerian size of the cloud of a diffusingadmixture
[with the distribution of concentration c(y,I)] in a
coordinate system with its origin located at the cloud
centroid. In an isotropic turbulence, at a spherically
symmetrical initial distribution of concentration, the
Richardson function is spherically symmetrical and
obeys the equation the form of which coincides with
equation (18)

~(X,/) = x- 2{x2[211+!i(X)]l/J'(x,t)}', (35)

where II is the coefficient of molecular diffusion of the
species considered.

When the initial concentration distribution has the
form of the (i-function, the initial Richardson function is
determined by equation (19). In this ease the
Richardson function coincides with the Lagrangian
Green's function, and for the Eulerian dimensions of
the cloud characterized by the moments

r"(t):: L"'47tx'+2l/J(X, r)dx, (36)

- - t (t),2(/) =,~ exp~+12/1' exp~-I , (37)

exceeds the inner scale I, then the sizeof the cloud can be
estimated with the aid of the relationship similar to
equation (29),namely

roo 2 rx y dy
31 = Jo 47t[t/J(x,t)-l/J(x,0)]x dx Jo 2/

1
+ Q (y)'

(38)

which is derived from equation (35) provided l/J(x, I) is
replaced by ~(x, I)and the expression obtained for t/J is
integrated over the whole space with respect to time
from 0 to I .

Applying the reasoning similar to that used for the
derivation of equations (30) and (31), we obtain from
equation (38)

,2/3(t) = ,~/3 +el /3t (/«'0,'« L), (39)

,2(/) = ,~+6eI/3L4/3t ('0» L). (40)

Equation (39)isone ofthe forms of representation of the
Richardson 4/3rd law [16].

By comparing equations (37), (39) and (40) with
equations (33) we may conclude that in the process of
turbulent diffusion at II - v a considerable portion of
the cloud mixes with the surrounding medium up to the
molecular level for the time during which the Eulerian
size of the cloud doubles. Moreover, it follows from
equations (30), (31), (39) and (40) that at II - v the
Lagrangian size of the cloud coincides with the
Eulerian one, if these are much larger than the initial
size and the inner scale I.

6. TIlE TOTAL PRODUcr OF CHEMICAL

REAcrIO~

The results obtained in this work can be applied to
the study of fairly slow chemical reactions in which the
concentration of reacting components is determined
mainly by mixing and is virtually independent of the
reaction rate. As an example having relevance to the
process occurring in the atmosphere and the ocean,
consider a reaction in an infinite space between the
species initially concentrated in limited volumes. In
contrast to the case of very fast reactions, in which the
rate of the final product yield increases with turbulence
intensity, in the example considered the enhancement
of turbulence decreases the final product yield. This is
explained by acceleration of the turbulent diffusion
process which scatters the species ad ilIfilIitlllll well
before they have time to react.

Let the first and second species form, while mixing,
the third substance as a result ofthe irreversible second­
order chemical reaction. The reaction rate is
independent of temperature and is so slow that a
reaction-produced change in the substance concen­
tration can be neglected . In this case the quantity of the
third substance Q, produced within the whole volume
for the time from 0 to co (the total product of the
chemical reaction) is proportional to the time integral
of equation (12)and, with equations (16)and (17) taken
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into consideration can be given as 8. CONCLUSION

where

Within thelimitx ...... O,D(x) - (N/3JI)xZ, while over the
inertia interval D(x) - 2Nr.-1/3x 2/3 . This agrees with
the results obtained in refs. [17, 18].

4n:{<Xl ~(z, t)ZZ dz ...... 1 at t ...... 00 . (43)

Therefore
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The paper considered the processes of mixing and
diffusion in random velocity field. The main
assumption, which allowed the splitting of the velocity
correlation and the concentration product and the
derivation of the basic equations (5) and (7), is the
assumption that the velocity field is the Gaussian
process O-correlated with respect to time. It is known
that the approximation of this velocity field poorly
applies to the description of the turbulent motion of
fluid particles in a fixed coordinate system [13].
However, this approximation, when used to describe
the phenomena based on the relative motion of fluid
particles, leads to physically reasonable results. Thus, it
shows an exponential growth in time of the mean
distance between the fluid particles on the inner scale of
turbulence [13]. It has been shown in the present work
that the approximation to the Gaussian o-correlated
process leads to the Richardson 4/3rd law, to the
structural function of concentration field with correct
asymptotic behaviour, to the conclusion on the
impossibility of mixing the substances which have zero
coefficients of molecular diffusion. The above allows
one to hope that the application of the Gaussian 0­
correlated process to the description of mixing of
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and (44)which follow from the mixing theory developed
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(42)

(44)

(45)

k (<Xl d.l'
q(x) = 4n: J.. yZ[JII +Jlz+9l(y)]"

q(x) = k LX) ~(x, t) dt,

and k is the chemical reaction rate constant.
The function q(x) has the meaning of the total

product of the reaction at the initial concentrations in
the form of o-functions spaced by the distance x.

In order to determine q(x), we shall use equation (28).
By virtue of equation (19), the term in equation (28),
which contains the initial value of~(z, 0), becomes zero.
In addition, for rather long times, the 'width' of the
function ~(z, t) at Jl *0 is so large that at the final values
of y, which contribute mainly to equation (28)

It follows from equation (44) that with a decreasing
distance x between the o-functions, the total chemical
reaction product increases. This is attributed to the fact
that with a decrease in x the characteristic values of
concentrations in the clouds increase at the stage of
their substantial overlapping. Moreover, it can also be
seen from equation (44) that with the growth of the
turbulence intensity [at higher 9l(y)J the chemical
product yield decreases. This can be explained by an
increase in the rate of cloud spreading which reduces
the time of contact of the components.

7. TIlE EQUILIBRIUM STRUCTURAL FUNCTION

OF TilE CONCE1\'TRATION FIELD

Let us direct our attention to the initial equation(5) in
which C1 and Cz are now understood to represent the
concentration ofthe same species and let us assume that
the concentration field is uniform and isotropic. In this
case equation (5) goes over into the equation for the
correlational (structural) function of concentration the
form of which coincides with equation (18). By
introducing into equation (18), similar to refs. [17,
18], the source of fluctuations with the power N,
required for the stationary regime to be realized, we
obtain the equilibrium structural concentration
function
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Let us represent g(x) in a more general, than in equation
(18b), form

The transition probability (A5) at m = 4/3 can be used for
the analysis of cloud expansion in the inertia interval of scales.
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APPEl"mX

Assuming II = 0 in equations (18) and (35) and introducing
the notation

(AI)

(A3)

(A2)

(AS)

g(x) = bx m
, (0 ~ m < 2),

4n:x2if!(x, t) =~ f(x, tlxo)'
Xo

ifJ(x,t) = x- 1p(x,t),

we obtain for p(x, t) the following equation

<i> = gq,"+g'qJ'-x- 1g'p.

where b is a constant.
Solving equation (A2), with account for equation (A3), by

the method of separation of variables and using the Hankel
transformation [19], we find the Green's function, equation
(A2),corresponding to the initial <5-function at the point y

(xy)O-ml/2 [x2-m+y2-m]
f(x, tlY) = exp - ---,-,.---:--

(2-m)bt (2-m)bt

[
(Xy)12-ml/2]

XI(m+ 1):12-m) 2 bi(2-m)2 ' (A4)

where I is the modified Bessel function.
Equation (31) at Jl = 0 goes over into the equation for the
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MELANGE A L'ECHELLE MOLECULAIRE DANS UN MILIEU TURBULENT

Resume-On obtient une equation pour les concentrations moyennes de deux especes dans un champ de
vitesses aleatoires isotrope en moyenne. Lechamp des vitesses est suppose etre un processus aleatoire normal
<5-correle par rapport au temps. Le mecanisme de melangeal'echelle moleculaire est associe ala diffusion dans
les coordonnees lagrangiennes. La concentration moyennes des especes est donnee ; I'estimation est faite pour
la croissance de la taille du nuage dans les coordonnees lagrangienne et eulerienne. Les temps caracteristiques
de melange des especes sont estimes, On obtient uneexpression pour Ieproduit global d'une reaction chimique
irreversible de second ordre, avec des distributions initiales arbitraires de reactants. La fonction structurelle

d'equilibre de melange passif est donnee apartir de la fonction structurelle du champ de vitesse.

MISCHEN BIS ZUM MOLEKULAREN BEREICH IN EINEM TURBULENTEN MEDIUM

Zusammenfassung-Fiir die mittleren Konzentrationen zweier Stoffe in einem isotropen stationaren
ungerichteten Geschwindigkeitsfeld wird eine Gleichung angegeben. Es wird angenommen, dall das
Geschwindigkeitsfeld eine normale Zufallsverteilung mit <5-Korrelation beziiglich der Zeit hat. Es zeigt sich,
daB der Vorgang der Mischung bis in den molekularen Bereich mit der Diffusion in Lagrangeschen
Koordinaten verkniipft ist. Diemittlere'Teilchenkonzentration in Lagrangeschen Variablen wurde gefunden.
Die Berechnungen wurden fUrdie Ausbreitungsgeschwindigkeit der Zumischwolkengrobe in Lagrangeschen
und Eulerschen Koordinaten gernacht. Die charakteristischen Mischzeiten von vorsortierien Stoffen wurden
berechnet. Ein Ausdruck fur das Endprodukt einer langsamen irreversiblen chemischen Reaktion zweiter
Ordnung bei vorgegebener Anfangsverteilung der Reaktionspartner wurde erhaltcn. Die strukturelle
Gleichgewichtsfunktion des passiven Zumischstoffes wird in Abhangigkeit von der strukturcllen Funktion

des Gcschwindigkeitsfeldes angegebcn.
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CMEIllEHlIE no M0J1EKYJ151PHOrO YPOBH5I B TYPEYJ1EHTHbIX CPE.nAX

AHHOTaUHR-nO:Jy'lello ypasneuue !VIII cpeauero npomsenenua xouneurpaunii neyx DeweCTB D
IIJOTpOmIO~1 craunonapnoxt cny'laiilloM none CKOpOCTCii. Ilpennonaraercs, 'ITO none CKOpOCTCii CCTb
1I0p~lailbllblii. ')-KoppenllpOBallllblii no Bpe~ICHII cny'laiillblii npouecc, nOKaJaIlO. 'ITO npouecc
C~leWCIIIIII no xtonexynspnoro ypOB1I1I CBIIJall c nll'f>'f>YJlleii B Jlarpall;l;CBblX xooprumarax. Haiinena
cpennss xonuenrpaunx BelUeCTDa B narpaaxeaux nepevremurx, Caenauu ouenxn CKOpOCTII pOCTa
paaxtepcs 06.1aKa npuxieca B narpanxeasix II 31L1epOBblX xoopnunarax. Oueaeusr xapaxrepnsre
spesreua C~lelUCHIIII npensapnrensuo pmnenennux BeweCTB. nO.1Y'lCII0 asrpaxenne JL'l1i cysorapuoro
nponyxra ~ICJL'lCHIIOii neofiparuxroti XII~III'leCKOii peaKU1I1I sroporo nopsnxa npn np0Il3BO.1bllb1X
lIa'lailbllblX pacnpenC.1CIIIIIIX pearCIITOB. PaBIIOBCCHali crpyxrypnas 'f>YHKUIIII naccnsuoli npusrecn

aupaxena xepea crpyxrypnyro .pyHKUIlIO nons CKOpOCTCii.
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