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MIXING TO A MOLECULAR LEVEL IN TURBULENT MEDIA
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Abstract—An equation is obtained for the mean product of concentrations of two species in an isotropic
stationary random velocity field. The velocity ficld is assumed to be a normal random process é-correlated
with respect to time. The process of mixing up toa molecular levelis shown to be associated with diffusion in the
Lagrangian coordinates. The mean species concentration in the Lagrangian variables has been found. The
estimates have been made for the rate of growth of the admixture cloud size in the Lagrangian and Eulerian
coordinates. The characteristic times of mixing of preseparated species have been estimated. An expression is
obtained for the total product of a slow irreversible second-order chemical reaction at arbitrary initial
distributions of reagents. The equilibrium structural function of the passive admixture is given in terms of the
structural function of the velocity field.
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constant in equation (A3)
concentration at point x and time ¢
concentration of first and second
species, respectively
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ensemble of velocity field realizations)
of species characterized by the
molecular diffusion coefficient equal to
Bt

function defined by equation (21)

equilibrium structural function of a

homogeneous isotropic concentration
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longitudinal structural velocity

function

function defined by equations (4) and (8)

9(x, 1), ¥(x,t) ‘Lagrangian’ Green’s function
G(x, t/y) Green’s function of equation (7)
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chemical reaction rate constant

inner scale of turbulence

outer scale of turbulence

exponent in equation (A3)

strength of the sources of
concentration field fluctuations

total product of chemical reaction with
the initial distribution of reagent
concentrations in the form of
o-functions spaced x apart

total product of chemical reaction with
arbitrary initial distribution of reagent
concentrations

Richardson’s function moment of
order n

n-order moment of mean concentration
distribution in Lagrangian

coordinates

Schmidt number, v/u

time

time required for the width of
Lagrangian Green’s function to
become equal to [

L time of mixing
vi(y,t) kth Cartesian component of medium
velocity at point y and time ¢

UL longitudinal velocity component

Av, characteristic difference between the
velocities at two points spaced x apart

x modulus of vector x, |x|

X, Eulerian position vector

y
XY Lagrangian position vector

b & n-order moment of Lagrangian
Green’s function.

Greek symbols
o Dirac delta function
I'(x,t/y) Green’s function of equation (A2)
A Laplace operator
A, A, Laplace operators applied to variables

X,y

£ specific velocity of turbulent energy
dissipation

i molecular diffusion coefficient

Iy, 11, molecular diffusion coefficient of first
and second species, respectively

T characteristic time of inner turbulence
scale

1(x) x-sized vortex lifetime

¢(x,t) function defined by equation (A1)

Y(x,t) function defined by equation (6);
Richardson’s function (34).

Subscripts
ik signify the number of Cartesian
coordinates which take on the values
1,2,3
0 initial value.
Superscripts
0 initial value

time derivative
spatial derivative.
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1. INTRODUCTION

THE MIXING of reagents up to a molecular level is an
important aspect of the problem of chemical reactions
in turbulent media [1]. The molecular-level mixing ata
certain point in space means that at this point the
concentrations of all the substances being mixed
become simultaneously different from zero. The rate of
mixing governs the yield of the chemical reaction
product. In particular, the rate of substance formation
in a very fast chemical reaction is limited by the finite
rate of mixing.

It has long been known that the rate of mixing in
turbulent media is much faster than in laminar ones.
The first estimates of the mixing rate were made by
Corrsin [2-4] who estimated the time for the decay of
fluctuations of a statistically homogeneous concen-
tration field. It is the disappearance of fluctuations
which indicates that the added material has been mixed
up to the molecular level with the host medium. In a
typical case of moderate Schmidt numbers this time has
turned to be equal to the lifetime of a vortex having the
size of the order of the outer scale of the concentration
field.

In recent times a number of problems of chemical
reactions have been considered and in this way the
problem of mixing has also been touched to some
extent. By using different closure methods for the
moment equations, one- and two-component second-
order reactions have been studied in detail at the final
stage of turbulence decay when the medium motion can
be neglected [5-7]. It was shown in refs. [7-9] that the
problem of a very fast two-component second-order
reaction is reduced to the problem of finding the one-
point distribution function of the substance concen-
tration in the absence of a chemical reaction. A detailed
discussion of the methods used for the purpose is given
elsewhere [10]. Some aspects of chemical reactions
involving heat generation were considered in ref. [11].

The present paper concerns itself with the problem of
mixing of preseparated species up to the molecular level
in the absence of chemical reactions. This paper differs
from the other reported studies in the method of
solutionand ina more general statement of the problem
which is formulated as follows.

Suppose that at the initial instant of time the
arbitrary distributions of concentrations ¢2(x) and c3(x)
of two species with unit masses are assigned in the
turbulent medium. The statistical characteristics of the
velocity field are assumed to be given and independent
of the above species in the medium, while the
coefficients of molecular diffusion of species are
assumed to beindependent of their concentrations. The
random velocity-averaged product of concentrations
{eo(x,1)cy(x, 1)) at any subsequent time is required.
This product may serve as a quantitative characteristic
of the extent of mixing of species up to the molecular
Ievel. Just as in all the previous works dealing with this
subject, the derivation of the basic equations in this
work is based on some simplifying assumptions the
main one being the assumption that the velocity field is
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8-correlatedin time. In order to check the validity of the
initial equations obtained in this way, they were used
for solving a number of ‘test’ problems of turbulent
mixing. Thus, without resorting to any additional
arguments following, for example, from the dimen-
sional or similarity theories, the Richardson 4/3rd law
has been obtained as well as the equilibrium structural
function of the isotropic concentration field pointing to
the fact that the approximation used for the problem of
turbulent mixing is quite reasonable.

2. BASIC EQUATIONS

Let us derive an equation which would govern a
more general object of investigation {c,(y,)ca(y
+Xx,1)>. The starting equations will be the dynamic
equations for concentration in a moving medium. In
particular, the equation for the concentration of the
first species is

dey(y, 1) 2 0a(y, 1)
T‘*‘”k(}ﬂ) v

where v,(y,?) is the kth component of the incom-
pressibleliquid velocity at the point y at time ¢ ;and p, is
the coefficient of the molecular diffusion of the first
species. The equation for ¢,(y +x, #) has a simifar form.
Mutltiplying equation (1) by cy(y+x,t), and the
equation for the concentration of the second substance
by ¢,(y,1), and then adding them together, we shall
obtain, after averaging over arandom velocity field, the
following equation

F o oy &
a "\Gy ox) Mo

] ]
x {ey(y, ey +x, 1)) +(a — E)

= #lAcl(y: t)x (1)

)
X (vk(y: t)cl(y’ t)CZ(y +X, t)) + a_'
Xk

x oy +x,8)eq(y, ey +x, ) = 0. @
Inorder to calculate the mean product of the velocity
and concentrations, being the functional of the velocity,
we suppose that the velocity is the Gaussian random
process d-correlated in time. By applying the method
suggested in ref. [12], a detailed description of which is
given in refs. [13, 14], we obtain for the case of the
stationary isotropic velocity field:

<Dk(Z, t)cl(ys t)cz(y +X, t))

a d |
= —[Bk;(l—)')(g;j - E)"'Bkj(z_y"x)'a?j]

i J
xLegys ey +x,10, (3)

where
Byz~y) = f vz, Doyly, 1)y dr'. “4

By substituting equation (3) into equation (2) and
taking into account the incompressibility, we obtain
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the following equation for the mean product of
concentrations

-(z B,;(0) s 2 z
at Y\ ayy dy; Oy Ox;

9 &? &

2 2B, (x)( ——— ————
+ 0x; 6x,)+ L) (6xk ox; Oy 6xj)
62

—pu | A HA 22— )—
l‘l( A a}'g) I‘zAx}

x{eqly, ealy +x,0) = 0. ®

Henceforth, we will be interested in the volume-integral
product of concentrations

Y1) = f(cl(y, ey +x,1)) dy. (6)

The equation for /(x, f) is obtained by integration of
equation (5) over y:

o Y .
i Dudx) ox, O, +{(u, +1)AY, )
in which
Zu(x) = 2[By(0) — By(x)1. @®)

3. DIFFUSION IN THE LAGRANGIAN COORDINATE
SYSTEM AND MIXING

One of the main outcomes of this study is a
constructive description of mixing and diffusion of
admixturesin the Lagrangiansystem ofcoordinates. As
is known, the Lagrange approach is based on the study
of the behaviour of fluid particles tagged by one or
another means. The natural label is usually taken to be
the Eulerian coordinate of a fluid particle at the initial
instant of time [15]. In principle, the Euler and
Lagrange approaches are equivalent, and a choice
between the two may be made only on the basis of the
nature of the problem studied.

_An attractive feature of the Lagrangian description
of mixing is the fact that at the zero coefficient of
molecular diffusion the concentration of the passive
admixture is not altered during the motion of a fluid
particle and thus is independent of the random velocity
field. This is easily seen from equation (1), which at
1 = 0 takes on the form

D =0
EC()’O_ > (9)

where D/Dt is the operator giving the material
derivative. It follows from the above equation that at
=0 the concentration of the passive admixture
retains its initial value in the Lagrangian variables.

The process of mixing within the entire volume is
characterized by the quantity

l//(O, t) = I(cl()'a I)CZ(y’ t)> d)’ (10)
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Converting in equation (10) to the Lagrangian
coordinate system Y and taking into account that for
the incompressible liquid the transformation Jacobian
between the Euler and Lagrange coordinatesisequal to
unity [15], we obtain

¥(0,1) = f e ly(Y, 8, 1]ea[y(Y, 0),1> dY

= f(cl(\’, Ney(Y, 1)) dY. (1)

The use of the hypothesis concerning the o-
correlationability of velocity field allows one to realize
the consequences of equation (9) in a simple analytical
form. Asit follows from equation (7), the function y(x, £)
depends only on the sum of the molecular diffusion
cocfficients. Therefore, the result of mixing equation
(11) will remain the same if we assume that one of the
species, e.g. the second one, has a zero diffusion
coefficient, while the first has the diffusion coefficient
which is equal to g, +p,. Taking into account the
above invariance of concentration distributions in the
Lagrangian variables at zero diffusion coefficients, we
may write

¥(©,1) = J(Cx(Y’ Dy 442" €2(Ys Dy= 0> Y

= J(cl(Y, Oy +420 €2(Y) AY. (12)
On the other hand, equation (7) yields
Y(0,1) = JG(O, t/y)¥(y,0) dy, (13

where G(x, t/y) is the Green’s function of equation (7)
which corresponds to the initial -function at the point
y. Taking into consideration the symmetry of the
Green’s function over the spatial variables, which
follows from the Hermitian nature of the spatial part of
the operator in equation (7), and the definition (6) of the
function Y, we obtain

¥(0,1) = JG()', 1/0)c}(2)c3(z+y) dz dy

= fG()'z —¥1,1/0)cS(y1)e3(y) dy, dy,. (14)

Integration in equation (14) can be considered to be
performed over the position of fluid particles at the
initial time instant, i.e. actually over the Lagrangian
variables. Therefore, equation (14) can be rewritten in
the form

¥(0,1) = JG(YZ—YI’I/O)C?(YI)Cg(YZ)dYI dy,. (15)

Setting equation (12) equal to equation (15) and
taking into account the arbitrariness of the initial
distribution of ¢3, gives the expression for the mean
concentration of the species, the molecular diffusion
coefficient of which is equal to 2p = iy + 15, in the
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Lagrangian coordinates

(X, 1) = J(!}(X —Y,0c%(Y)dY, (16)
where #(X, 1) = G(X,t/0) is the so-called Lagrangian
Green’s function. It describes the mean concentration
of the species at time t at the Lagrangian point X under
the condition thatatt = Oit wasconcentratedatX = 0.
In the case of an isotropic velocity ficld, the Lagrangian
Green's function depends only on the absolute value of
the argument

g(X,0) =9(X,1), (17)
and satisfies the equation
Gx, ) = x"2{x2u+2()]1% (%, 0},  (18)
subject to the initial condition
1 ’
G50 = — - 70 (19)
2n x
where
t
2(x) = .[ {Lol0, ) —vi(x,8)]
x [0, ) —v x, )]> dr',  (20)

and vy isthe velocity component parallel to x. Equation
(18) is obtainable from equation (7) if the spherical
symmetry of the solution, the isotropic nature of the
tensor Z;, and fluid incompressibility, are taken into
account.

The analytical form of the function 2(x), having the
meaning of the ‘turbulent’ diffusion coefficient, is
unknown within the entire region of the argument
variation. This prevents the analytical solution of
equation (18) being valid for all the values of x. The
function 2(x) can be estimated by the formula Z(x)
~ Dy (x) 1(x), where 2 ,(x) is the longitudinal
structural velocity function, and t(x) is the lifetime of
the x-sized vortex determined by the difference of
velocities Av, ~ /[21(x)] at the distance x: 7(x)
~ x/Av,. As a result we obtain

2
v(?) y XU

2 \413
B(x) ~< gl3x43 ~ V(T) , l«x«L, (21b)

(21a)

R, x» L, (1)

where [ and L is the inner and outer turbulence scale,
respectively; ¢ is the specific rate of turbulent energy
dissipation; and v the molecular viscosity of the
medium.

Equation (18) was investigated for each of the
functions 2(x) in equations (21). The analytical
solution of equation (18) obtained for the scales less
than I, where 2 ~ x?, is given elsewhere [20]. The
solutionofequation(18)at u = Qinvolving the function
Z(x), given by relation (21b), is presented in the
Appendix for the inertia range of scales. A more
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complete investigation of equation (18), using the
experimental data to determine £(x) within the entire
range of the values of x, appears to be feasible only by
numerical methods. However, the basic qualitative
principles of diffusion (in the Lagrange coordinates)
and of mixing can be established by not resorting to
the solution of equation (18) but rather restricting
ourselves only to the study of the moments of the
Lagrangian Green’s function.

4. THE LAGRANGIAN SIZE OF THE ADMIXTURE
CLOUD AND THE TIME OF MIXING

The results obtained in Section 3, in particular
equation (12), allow the interpretation of the process of
mixing of two species as the ‘spreading’, in the
Lagrangian coordinate system, of the cloud of one of
the species diffusing with the total diffusion coefficient,
over the initial distribution of concentration of the
other species. The mixing of the preseparated species
will occur after a noticeable overlapping of these
distributions. This requires a corresponding increase in
the size of the admixture cloud in the Lagrangian
coordinatesystem. The mixing time is understood to be
a period during which this overlapping will occur. It is
apparent that in order to determine the mixing time it is
necessary to know the time dependence of the
Lagrangian size of the admixture cloud. The
Lagrangian size of the diffusing admixture cloud at
time ¢ has a simple geometrical meaning: this is the
initial (at ¢ = Q) distance between the fluid particles
into which the admixture has diffused by the time ¢.

In an isotropic turbulent medium the position of the
admixture cloud centroid in both the Eulerian and
Lagrangian coordinates does not depend on time. By
matching the coordinate origin with the cloud centroid
we will obtain, with account for equation (16), the
following expression for the RMS size of the admixture
cloud in the Lagrangian coordinates

Rty = fX2<c(X, 1)) dX

= fng(x—y, Ne(Y)dY dX. (22)

Employing the substitution Z = X—Y in the above
equation and taking into consideration that because of
the parity of the Lagrangian Green’s function its first
moment is equal to zero, we obtain

R*() = R3 +X7(1), 23)

where R—(z, is the mean square of the initial cloud size;
X?(¢) is the mean square of the width of the Lagrangian
Green'’s function which describes the admixture cloud

with theinitial concentration distributionin the form of
the 5-function

X =4nwa4@(X,t)dX. (29)
0
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It follows from equation (23) that the Lagrangian
RMS size of the cloud is equal to its initial value
summed up with the mean square of the Lagrangian
Green’s function width. For short times, when this
width is much less than /, relations (18) and (21a) yield
equation (24) for the Lagrangian size the solution of
which, with equation (19) taken into account, is

— t

XX ) =12ur (exp-r— - 1>, (25)
where tis the characteristic time of the inner turbulence
scale

=017/ (26)

Equation (25)is valid for the times not exceeding the

- time
Sv
g=tln{l+——]),
e ( 6#)

during which the Lagrangian size attains the value ~ 1.

It follows from equation (25) that the initial (att < 1)
expansion of the cloud occurs at the expense of
molecular diffusion without the interaction with
hydrodynamics. For the species, for which p ~ v, the
role of hydrodynamics is relatively insignificant over
the whole stage of cloud expansion up to the size ~I,
which is attained for the time ~t. For the species for
which  « v,atthetimes withintheranget < t < t,,the
Lagrangiansize increases exponentially whichisdueto
the exponential growth in time of the mean
concentration gradients occurring on the scales smaller
than { [16]. Note that according to equations {23) and
(25) at 4 = 0 the Lagrangian size of the cloud does not
increase. This means that the admixture remains within
the same fluid particles into which it penetrated
initially. In other words, as time proceeds, at 4 = 0, the
fluid particles, different from those which were coloured
in the beginning, retain their initial colour. Yet, the
increase of the Lagrangian size of the cloud may occur
only as a result of the appearance of additional
‘coloured’ particles. Consequently, it is impossible to
mix the preseparated species having it; = g, = Oupto
the molecular level.

In order to estimate the size of the region where the
Lagrangian Green’s function is noticeably different
from zero, there is no need to solve equation (18).
Express %(x, {)fromequation (18)in terms of 4(x, f)and
integrate the result with respect to time from 0 to ¢

j‘g(x t)dtsr——dy—
o = Y [2u+20)]

x jm [%(z, ) —%(z,0]z* dz. (28)

¥

@7

By substituting the initial condition (19) into
equation(28)andintegrating bothsides ofequation(28)
over the volume, we obtain

0 X y
3;:[ 4nx>%(x, 1) dx J y dy

—_— 29
° 0 20+2() @)

HMT 26:12-C
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This relation can be used to estimate the Lagrangian
size of the cloud for the times that exceed ¢, When the
cloud size lies within the inertia interval, then the main
contribution to the integral (29) comes from the values
of x within this interval. For such values of the upper
limit, the internal integral in equation (29) can be
evaluated using relations (21a) and (21b). At x » [, for
the typical case of ¢ ~ vthe value oftheinternalintegral
is equal to ~&~"3x2/3, which, after substitution into
equation (29), gives

I 4nx2%(x,0x?? dx = X7°() ~ V3. (30)

0

Thus, if the Lagrangian sizes of the cloud fall within
the inertia scale interval, the 2/3rd moment of mean
concentration distribution increases linearly with time.

If the cloud, originating from the initial é-function,
has expanded in the Lagrangian coordinates up to the
dimensions that substantially exceed L, then, as follows
from equations (21) and (29), the law which governs its
expansion at times exceeding the time of attainment of
the size ~ L, is of the form

X2(1) ~ 663143, (1)

The mixing time ¢, depends on the initial
concentration distributions. Let, for the sake of
definiteness, the first species be concentrated within the
volume having the characteristic size R,, while the
second be distributed in the space outside this volume.
Inthiscase, thetime t,, according toequation(12),is, by
the order of magnitude, the time of doubling the
Lagrangian volume of the first species, or, as it follows
fromequation(23),1s equal to the time during which the
size of the Lagrangian Green’s function will become
comparable with theinitial size of the admixture cloud:

X2(t,) = R2. (32)

It is easily seen that the above equality can be also
applied to estimate the time of mixing of two species
which initially occupied the volumes of the size ~R,,
spaced by the distance ~R,, and of the species the
initial concentration distributions of which had the
form of the é-functions spaced by the distance R,,. For
these types of initial distributions the mixing time
estimated by equation (32) with equations(25),(30) and
(31) taken into account, is equal, by order of magnitude,

to
] 1+5 v (R 2} Ry« 1, (333)
ta~7TlIin 3 0, ] s 0 »

{R%""e_l“, l« Ry« L, (33b)
f. ~
" LRV, Ry L, (330)

Expressions (33b) and (33c) are valid for S¢ ~ 1.

The estimation of the damping time for a statistically
uniform field of concentrations having the outer scale
within the inertia interval has been made elsewhere [4].
For the numbers Sc ~ 1 this estimate coincides with
that given by equation (33b).
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5. THE EULERIAN SIZE OF THE CLOUD

Setting ¢, = ¢, = c(y,t) in equation (6), we obtain
that the quantity y(x, t) transforms into the Richardson
function [16]

Yix, 1) = J(C(y, te(y +x,1)) dy, (34
with the help of which it is possible to determine the
mean Eulerian size of the cloud of a diffusing admixture
[with the distribution of concentration c(y,t}] in a
coordinate system with its origin Jocated at the cloud
centroid. In an isotropic turbulence, at a spherically
symmetrical initial distribution of concentration, the
Richardson function is spherically symmetrical and
obeys the equation the form of which coincides with
equation (18)

Jix,0) = x"H2p+ 200, (39
where p is the coefficient of molecular diffusion of the
species considered.

When the initial concentration distribution has the
form of the -function, theinitial Richardsonfunctionis
determined by equation (19). In this case the
Richardson function coincides with the Lagrangian
Green’s function, and for the Eulerian dimensions of
the cloud characterized by the moments

(t) = r 4nx"* 2y(x, ) dx, (36)

0

the estimates given by equations (25), (30) and (31) are
valid.

It is not difficult to estimate the size of the cloud also
in the case of an arbitrary, initial, spherically
symmetrical distribution of concentration. When the
size of the cloud is much less than [, then equations (35)
and (21a) may yield the equation for the second
moment from equation (36), the solution of which is

- t t
r}(t) =rd exp—+12 1 (exp - 1), (37)
T T

whererdis the second moment of the initial Richardson
function. :

It follows from equation (37) that for the time t ~ 1
the size of the cloud increases at the expense of
molecular diffusion and convective transport of the
substance, the contributions of which are proportional

to12 urandrd. If i ~ v,then by thetimet ~ tthecloud
will have attained the size ~1 and its further increase
cannot be described by equation (37). If 4 « v, then by
the time ¢ ~ 7 the size of the cloud will have become
much smaller and its subsequent expansion up to the
size ~[ will have an exponential character, This is due
to an exponentially rapid increase of the mean distance
between the fluid particles on the scales ~1[16]. Note
that if the initial size of the cloud differs from zero, the
Eulerian size, in contrast to the Lagrangian one,
increases also at p = 0.

When the size of the diffusing admixture cloud
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exceeds theinnerscalel, thenthesize of thecloudcanbe
estimated with the aid of the relationship similar to
equation (29}, namely

— ” - x£
3t_L 4nfy(x, ) —¥(x,0)]x? de 2u+20)

(38)

which is derived from equation (35) provided ¥(x, t) is
replaced by i (x, 1) and the expression obtained for i/ is
integrated over the whole space with respect to time
fromOtot.

Applying the reasoning similar to that used for the
derivation of equations (30) and (31), we obtain from
equation (38)

B = 2P+t (l<rgr<l),  (39)

(40)

Equation(39)is one of theforms of representation of the
Richardson 4/3rd law [16].

By comparing equations (37), (39) and {40) with
equations (33) we may conclude that in the process of
turbulent diffusion at u ~ v a considerable portion of
the cloud mixes with the surrounding medium up to the
molecular level for the time during which the Eulerian
size of the cloud doubles. Moreover, it follows from
equations (30), (31), (39) and (40) that at g~ v the
Lagrangian size of the cloud coincides with the
Eulerian one, if these are much larger than the initial
size and the inner scale L

() = rd+68'3L43t  (ry » L).

6. THE TOTAL PRODUCT OF CHEMICAL
REACTION

The results obtained in this work can be applied to
the study of fairly slow chemical reactions in which the
concentration of reacting components is determined
mainly by mixing and is virtually independent of the
reaction rate. As an example having relevance to the
process occurring in the atmosphere and the ocean,
consider a reaction in an infinite space between the
species initially concentrated in limited volumes. In
contrast to the case of very fast reactions, in which the
rate of the final product yield increases with turbulence
intensity, in the example considered the enhancement
of turbulence decreases the final product yield. This is
explained by acceleration of the turbulent diffusion
process which scatters the species ad infinitum well
before they have time to react.

Let the first and second species form, while mixing,
the third substanceasaresult of theirreversible second-
order chemical reaction. The reaction rate is
independent of temperature and is so slow that a
reaction-produced change in the substance concen-
tration can be neglected. In this case the quantity of the
third substance Q, produced within the whole volume
for the time from O to oo (the total product of the
chemical reaction) is proportional to the time integral
ofequation (12) and, with equations (16) and (17) taken
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into consideration can be given as

Q= fq(lx—YI)C?(X)cg(y') dx dy, (41)

where

q(x) = kf Y(x,t)dt, 42)
(V]
and k is the chemical reaction rate constant.

The function g(x) has the meaning of the total
product of the reaction at the initial concentrations in
the form of é-functions spaced by the distance x.

Inorder to determine g(x), we shall use equation (28).
By virtue of equation (19), the term in equation (28),
which contains the initial value of #(z, 0), becomes zero.
In addition, for rather long times, the ‘width’ of the
function9(z, f) at u 3 Oissolargethatatthe final values
of y, which contribute mainly to equation (28)

4nJ‘ Y(z,0)z>dz—~1 att— oo. 43)
¥
Therefore
kK [® dy
= | — 2 )
=4 .[x VIt + 200 ¢

It follows from equation (44) that with a decreasing
distance x between the é-functions, the total chemical
reaction product increases. Thisis attributed to the fact
that with a decrease in x the characteristic values of
concentrations in the clouds increase at the stage of
their substantial overlapping. Moreover, it can also be
seen from equation (44) that with the growth of the
turbulence intensity [at higher 2(y)] the chemical
product yield decreases. This can be explained by an
increase in the rate of cloud spreading which reduces
the time of contact of the components.

7. THE EQUILIBRIUM STRUCTURAL FUNCTION
OF THE CONCENTRATION FIELD

Letusdirect ourattentionto theinitialequation(§)in
which ¢, and ¢, are now understood to represent the
concentration of the samespeciesand let us assume that
the concentration field is uniform and isotropic. In this
case equation (5) goes over into the equation for the
correlational (structural) function of concentration the
form of which coincides with equation (18). By
introducing into equation (18), similar to refs. [17,
18], the source of fluctuations with the power N,
required for the stationary regime to be realized, we
obtain the equilibrium structural concentration
function

(43)

4N [(* ydy
3

D(x) =— —_—
W=7 Jomrz0
Within the limit x — 0, D(x) ~ (N/3p)x?, while over the

inertia interval D(x) ~ 2Ne™*3x%3, This agrees with
the results obtained in refs. [17, 18].
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8. CONCLUSION

The paper considered the processes of mixing and
diffusion in random velocity field. The main
assumption, which allowed the splitting of the velocity
correlation and the concentration product and the
derivation of the basic equations (5) and (7), is the
assumption that the velocity field is the Gaussian
process d-correlated with respect to time. It is known
that the approximation of this velocity field poorly
applies to the description of the turbulent motion of
fluid particles in a fixed coordinate system [13].
However, this approximation, when used to describe
the phenomena based on the relative motion of fluid
particles, leads to physically reasonable results. Thus, it
shows an exponential growth in time of the mean
distance between the fluid particles on the inner scale of
turbulence [13]. It has been shown in the present work
that the approximation to the Gaussian d-correlated
process leads to the Richardson 4/3rd law, to the
structural function of concentration field with correct
asymptotic behaviour, to the conclusion on the
impossibility of mixing the substances which have zero
coefficients of molecular diffusion. The above allows
one to hope that the application of the Gaussian J-
correlated process to the description of mixing of
different substances and of their diffusion in the
Lagrangian coordinates will also lead to physically
reasonable results. Note that the accurate results (41)
and (44) whichfollow from the mixing theory developed
and which have a bearing on the total chemical reaction
product can be relatively easily checked by experiment.
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APPENDIX

Assuming y = 01in equations (18) and (35) and introducing
the notation

Vix 0 =x"1¢(x,1), (A1)
we obtain for ¢(x,1) the following equation
¢ =2¢"+2'¢'—x"12'¢. (A2)

Let us represent Z(x) in a more general, than in equation
(18b), form

2(x) = bx™,

where b is a constant.
Solving equation (A2), with account for equation (A3), by
the method of separation of variables and using the Hankel

transformation [19], we find the Green’s function, equation
(A2), corresponding to the initial 6-function at the point y

(xy)(l—m)IZ e x2-m+y2—m
P (2—m)bt

(2—m)bt
(xy)(z-m)/z
XI(mH)/(z-m)l:Zm . (Ad)

0<m<2), (A3)

I(x,t/yy =

where I is the modified Bessel function.

Equation (31) at 4 = 0 goes over into the equation for the
probability density of the distance x between a pair of fluid
particles in isotropic turbulence [13]. Therefore, the solution
(A4)makesit possible to write out the probability for detecting
thefluid particles at timet and distance xifat¢ = Othey wereat
the distance xq:

Anx?P(x,1) = Yi T'(x, t/xo). (AS)
Xp

The transition probability (A5) at m = 4/3 can be used for
the analysis of cloud expansion in the inertia interval of scales.

MELANGE A L'ECHELLE MOLECULAIRE DANS UN MILIEU TURBULENT

Résumé—On obtient une équation pour les concentrations moyennes de deux espéces dans un champ de
vitesses aléatoires isotrope en moyenne. Le champ des vitesses est supposé étre un processus aléatoire normal
d-corrélé par rapport au temps. Le mécanisme de mélange  I'échelle moléculaire est associé a 1a diffusion dans
les coordonnées lagrangiennes. La concentration moyennes des espéces est donnée ; 'estimation est faite pour
la croissance delataille du nuage dansles coordonnées lagrangienne et eulerienne. Les temps caractéristiques
demélange des espéces sont estimés. On obtient une expression pour le produit global d’une réaction chimique
irréversible de second ordre, avec des distributions initiales arbitraires de réactants. La fonction structurelle
d’équilibre de mélange passif est donnée a partir de la fonction structurelle du champ de vitesse.

MISCHEN BIS ZUM MOLEKULAREN BEREICH IN EINEM TURBULENTEN MEDIUM

Zusammenfassung—Fir die mittleren Konzentrationen zweier Stoffe in einem isotropen stationdren
ungerichteten Geschwindigkeitsfeld wird eine Gleichung angegeben. Es wird angenommen, daB das
Geschwindigkeitsfeld eine normale Zufallsverteilung mit 6-Korrelation beziglich der Zeit hat. Es zeigt sich,
daf der Vorgang der Mischung bis in den molekularen Bereich mit der Diffusion in Lagrangeschen
Koordinaten verkniipft ist. Die mittlere Teilchenkonzentration in Lagrangeschen Variablen wurde gefunden.
Die Berechnungen wurden fiir die Ausbreitungsgeschwindigkeit der Zumischwolkengro8ein Lagrangeschen
und Eulerschen Koordinaten gemacht. Die charakteristischen Mischzeiten von vorsortierten Stoffen wurden
berechnet. Ein Ausdruck fiir das Endprodukt einer langsamen irreversiblen chemischen Reaktion zweiter
Ordnung bei vorgegebener Anfangsverteilung der Reaktionspartner wurde erhalten. Die strukturelle
Gleichgewichtsfunktion des passiven Zumischstoffes wird in Abhingigkeit von der strukturellen Funktion
des Geschwindigkeitsfeldes angegeben.
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CMEMEHHE A0 MOJIEKYJIAPHOIO YPOBHA B TYPBVJEHTHBIX CPEJNAX

Antorauus—IloayueHo ypaBHeHHE IS CPSHErO NPOU3BEACHHS KOHLEHTpalUMil ABYX BeLICCTB B
H30TPONHOM CTALHOHAPHOM Cly4aiiHoM no:te ckopocteit. [Mpeanonaraercd, YTo nosie ckopocTeil ecTh
HOPManbHEI, J-KOppenHpPOBAHHBI MO BpeMeHH chaydaiinwii npouecc. [loxazano, 4to npouecc
CMEILEHHs 0 MOJIEKY/SPHOro ypoBHs cBa3aH ¢ nuddysneii B marpamkesbix koopauHatax. Hafinena
CpeaHsAs KOHUEHTPanus BEIIECTBA B JIaTPaHXeBbIX NepemeHHbX. ChelaHbl OLEHKH CKOPOCTH poOCTa
pasMepoB o0iaka MPHMeECH B JIArpaHXeBbIX M 3il1epoBbIX koopamnartax. OlEHEHB! XapakTepHble
BPEMEHA CMELIEHHA NPeABAPHTENIBbHO pa3feaeHHbIX BelecTs. [MoayyeHo Bripaxenue Mg CyMMapHOTO
NPOAYKTA Me[UTCHHOI HeoOpaTHMoli XHMHYecKOli PEeakUHHM BTOPOIO NOPAAKA NpPH NPOM3IBOILHBIX
HAYaNBLHLIX PACTpPENe;ICHHAX peareHTOB. PaBHoBecHas CTpyKTypHas ¢yHxumus naccusHOi mpuMecH
BLIPAXKCHA YEPe3 CTPYKTYpHYIO (YHKLHIO MOAS CkopocTeii.
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